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Abstract
Various neuroimaging measures are being evaluated for tracking Alzheimer’s disease (AD)
progression in therapeutic trials, including measures of structural brain change based on repeated
scanning of patients with magnetic resonance imaging (MRI). Methods to compute brain change
must be robust to scan quality. Biases may arise if any scans are thrown out, as this can lead to the
true changes being overestimated or underestimated. Here we analyzed the full MRI dataset from
the first phase of Alzheimer’s Disease Neuroimaging Initiative (ADNI-1) from the first phase of
Alzheimer’s Disease Neuroimaging Initiative (ADNI-1) and assessed several sources of bias that
can arise when tracking brain changes with structural brain imaging methods, as part of a pipeline
for tensor-based morphometry (TBM). In all healthy subjects who completed MRI scanning at
screening, 6, 12, and 24 months, brain atrophy was essentially linear with no detectable bias in
longitudinal measures. In power analyses for clinical trials based on these change measures, only
39 AD patients and 95 mild cognitive impairment (MCI) subjects were needed for a 24-month trial
to detect a 25% reduction in the average rate of change using a two-sided test (α=0.05,
power=80%). Further sample size reductions were achieved by stratifying the data into
Apolipoprotein E (ApoE) ε4 carriers versus non-carriers. We show how selective data exclusion
affects sample size estimates, motivating an objective comparison of different analysis techniques
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based on statistical power and robustness. TBM is an unbiased, robust, high-throughput imaging
surrogate marker for large, multi-site neuroimaging studies and clinical trials of AD and MCI.
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Alzheimer’s disease; Mild cognitive impairment; Aging; ADNI; Tensor-based morphometry;
Drug trial

Introduction
Alzheimer’s disease (AD) affects 5.4 million people in the U.S. alone, and over 24 million
people worldwide (Ferri et al., 2005). New treatments to slow or delay Alzheimer’s disease
progression must be rapidly and efficiently evaluated to alleviate a growing public health
crisis. A related condition is mild cognitive impairment (MCI); people with MCI are at
greatly increased risk of developing AD. As many as 10–25% of MCI subjects progress to
probable AD per year (Petersen, 2000, 2003a, 2003b). Numerous therapeutic trials are
underway to test novel compounds. Some of these trials use neuroimaging measures to
assess treatment effects on brain measures, such as amyloid levels in the brain or rates of
atrophy (Petersen, 2003a; Ross et al., 2012).

A wide variety of neuroimaging measures may be useful in tracking the progression of AD
and MCI. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) was set up as one of
several multi-center studies worldwide to develop and validate novel biomarkers to
characterize, detect and track AD (Frisoni and Weiner, 2010; Mueller et al., 2005a, 2005b;
Trojanowski et al., 2010; Weiner et al., 2010, 2012). In the first phase of ADNI (ADNI-1),
817 subjects received screening scans, including 188 early Alzheimer’s patients, 400
subjects with MCI, and 229 healthy controls, who were studied at 6- or 12-month intervals
for up to 36 months (Wyman et al., 2012). The entire dataset is publicly available (http://
adni.loni.ucla.edu), offering a large test dataset to develop, validate, and compare
biomarkers for disease classification and prognosis. A summary of approximately 200
published ADNI papers is provided in a recent review (Weiner et al., 2012).

High-resolution structural MRI is one of several imaging methods used to track AD, and
numerous MRI-derived biomarkers have been thoroughly investigated, including but not
limited to: (1) hippocampal volume (Jack et al., 1999, 2002; Morra et al., 2009a, 2009b;
Schuff et al., 2009), (2) lateral ventricular volumes (Carmichael et al., 2006; Chou et al.,
2008, 2009; Thompson et al., 2004), (3) gray matter volume or density, as measured using
voxel-based morphometry (VBM) in the statistical parametric mapping (SPM) software
package (Ashburner and Friston, 2000; Baron et al., 2001; Chetelat et al., 2005), (4) a
measure of brain change over time known as the brain boundary shift integral (BBSI) (Fox
et al., 2000; Freeborough and Fox, 1997), (5) automated methods for computing a variety of
regional subvolumes, such as longitudinal FreeSurfer (Reuter et al., 2012), and the FMRIB
Software Library (FSL) (Smith et al., 2007), (6) data-driven measures of temporal lobe
atrophy using tensor-based morphometry (TBM) (Hua et al., 2009, 2010), and (7) measures
of volume change in the entorhinal cortex, hippocampus, and whole brain using the
commercial software known as quantitative anatomical regional change (Quarc) (Holland
and Dale, 2011; Holland et al., 2009). Some of these methods also derive statistical maps of
brain changes over time, as well as numeric summaries of atrophy from anatomically and
statistically defined regions of interest. Earlier research applying pattern recognition and
machine learning to medical image analysis has resulted in significant improvements in
diagnostic accuracy and the specificity of AD imaging biomarkers (Davatzikos et al., 2008;
Vemuri et al., 2008). In these studies, the goal was to create a tool to discriminate between
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diagnostic groups, rather than to optimize the efficiency of a biomarker. In other words,
applying these algorithms to explicitly minimize required sample sizes will require
modifications. These modifications will likely lead to greatly reduced sample size
requirements in a clinical trial. Some evidence for this can be found in a recent paper by
(Gutman et al., 2012), where numeric summaries are computed from signals weighted using
linear discriminant analysis, and others, like Hobbs et al. (2010), which use a linear support
vector machine classifier.

With several imaging biomarkers currently being considered for therapeutic trials to track
brain degeneration (Cummings, 2010), different approaches need to be compared. Ideally,
biomarkers would show excellent effect sizes for detecting longitudinal changes, avoid
sources of bias, and not fail on a substantial fraction of the data, as a real clinical trial would
not allow the selective exclusion of data (Fox et al., 2011).

In the current paper, we had 3 goals: first, to report improved and highly competitive sample
size estimates for TBM, showing that no bias is present. Second, to develop and test several
new efforts to improve the robustness of TBM, making the results robust to outliers in the
data and poor quality scans. Third, to test whether standard enrichment methods –
preferential selection of subjects based on Apolipoprotein E (ApoE) ε4 genotype or family
history – could further reduce the required sample sizes when used in conjunction with the
proposed improvements. We also studied the effect of selective data exclusion on the sample
size estimates, suggesting that sample size estimates may be unduly optimistic if any
removal of outliers is allowed.

Materials and methods
Overall design

We employed TBM to analyze the full ADNI-1 dataset, including all available 1.5 Tesla MR
images scanned at screening, with follow-up scans at 6, 12, 18, 24, and 36 months
(N=3314), available for download at March 20, 2012. Numerical summaries were derived
from a statistical region-of-interest (stat-ROI) inside the temporal lobes to quantify
cumulative brain degeneration over time, and these were later used to compute sample size
estimates for hypothetical clinical trials. We used a subgroup of healthy subjects with
completed scan series at screening, 6, 12, and 24 months to assess whether our method was
biased (in the sense of over- or under-estimating the true rate of change), and to confirm the
biological plausibility of atrophy measures. We hypothesized that the healthy aging group
would exhibit an essentially linear trend of minimal brain atrophy, with a zero intercept for
the regression line fitted through all time points. We conducted power analyses to estimate
sample size requirements for hypothetical clinical trials employing imaging outcome
measures. We further tested the added effect of performing more standard drug trial
enrichment strategies using ApoE status and family history of dementia. Finally, we
conducted a simulation to demonstrate how sample size estimates were influenced by
selective data removal, an effort that suggests reasonable recommendations for fair
comparisons of methods in the future (cf. Wyman et al., 2012).

Alzheimer’s Disease Neuroimaging Initiative
Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative database (adni.loni.ucla.edu). The ADNI was launched in 2003 by
the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a $60 million, 5-year public–private partnership.
The primary goal of ADNI has been to test whether serial magnetic resonance imaging
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(MRI), positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment and early Alzheimer’s disease. Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers and clinicians to
develop new treatments and monitor their effectiveness, as well as lessen the time and cost
of clinical trials.

The Principal Investigator of this initiative is Michael W. MD, VA Medical Center and
University of California–San Francisco. ADNI is the result of efforts of many co-
investigators from a broad range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal
of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research,
approximately 200 cognitively normal older individuals to be followed for 3 years, 400
people with MCI to be followed for 3 years and 200 people with early AD to be followed for
2 years. For up-to-date information, see www.adni-info.org.

MRI acquisition and image correction
All subjects were scanned with a standardized MRI protocol developed for ADNI (Jack et
al., 2008). Briefly, high-resolution structural brain MRI scans were acquired at 59 ADNI
sites using 1.5 Tesla MRI scanners (GE Healthcare, Philips Medical Systems, or Siemens).
Using a sagittal 3D MP-RAGE scanning protocol, the typical acquisition parameters were
repetition time (TR) of 2400 ms, minimum full echo time (TE) of 3 ms, inversion time (TI)
of 1000 ms, flip angle of 8°, 24 cm field of view, 192×192×166 acquisition matrix in the x-,
y-, and z- dimensions, yielding a voxel size of 1.25×1.25×1.2 mm3, later reconstructed to 1
mm isotropic voxels. For every ADNI exam, the sagittal MP-RAGE sequence was acquired
a second time, immediately after the first using an identical protocol. The MP-RAGE was
run twice to maximize the chance that at least one scan would be usable for analysis.

The scan quality was evaluated by the ADNI MRI quality control (QC) center at the Mayo
Clinic to exclude failed scans due to motion, technical problems, significant clinical
abnormalities (e.g., hemispheric infarction), or changes in scanner vendor during the time-
series (e.g., from GE to Philips). Image corrections were applied using a standard processing
pipeline consisting of four steps: (1) correction of geometric distortion due to gradient non-
linearity (Jovicich et al., 2006), i.e. “gradwarp” (2) “B1-correction” for adjustment of image
intensity inhomogeneity due to B1 non-uniformity (Jack et al., 2008), (3) “N3” bias field
correction for reducing residual intensity inhomogeneity (Sled et al., 1998), and (4)
phantom-based geometrical scaling to remove scanner and session specific calibration errors
(Gunter et al., 2006). The first three steps were applied to both the first and repeat MP-
RAGE scans. The Mayo QC team then selected one of the preprocessed MP-RAGE scans
with superior quality, and proceeded to step four for phantom-based geometrical scaling.
The final corrected image was identified with the term “scaled” in the file name, to denote
phantom-based scaling.

The ADNI-1 dataset
The ADNI MRI Core has attempted to create a standard dataset to facilitate unbiased
comparisons of quantitative methods (Wyman et al., 2012). The dataset aims to include all
ADNI-1 1.5 Tesla scans that passed QC and went through all steps of image corrections.
Successively, subsets of data were defined based on subjects with complete 1.5-Tesla MRI
scan series for one or two years. As the process is ongoing, we based our paper on the full
dataset available for download at March 20, 2012. In our analysis, we reported results for
100% of the data downloaded. In other words, no data exclusion was permitted.
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In this manuscript, we reported results using the full dataset as well as for the subset of
subjects with complete visits up to and including their 2-year visit.

The Full Dataset included serial brain MRI scans (N=3314; Table 1) from 188 probable AD
patients (age at screening: 75.4±7.5 years, 99 Male (M) / 89 Female (F)), 400 individuals
with amnestic MCI (age: 74.8±7.4 years, 257 M/143 F), and 229 healthy elderly controls
(age: 76.0±5.0 years, 119 M/110 F). Subjects were scanned at screening and followed up at
6, 12, 18 (MCI only), 24, and 36 months (MCI and normal only).

The Complete 2-year Visit Subset (N=2079) included 98 AD (age: 75.2±7.4 years, 52 M/ 46
F), 207 MCI (age: 74.9±7.0 years, 139 M/68 F), and 163 healthy subjects (age: 76.0±4.9
years, 83 M/80 F) scanned at screening, 6, 12, 18 (MCI only) and 24 months.

All raw scans, images with different steps of corrections, and the standard ADNI-1
collections are available to the general scientific community at http://adni.loni.ucla.edu.

Image pre-processing
To adjust for linear drifts in head position and scale within the same subject, the follow-up
scan (6-, 12-, 18-, 24-, or 36-month) was linearly registered to its matching screening scan
using 9-parameter (9P) registration, driven by a mutual information (MI) cost function
(Collins et al., 1994). 9P linear registration was chosen to correct for scanner voxel size
variations in large longitudinal studies and any residual scaling errors after phantom-based
image correction (Clarkson et al., 2009). Additionally, to account for global differences in
brain scale across subjects, the mutually aligned time-series of scans was then linearly
registered to the International Consortium for Brain Mapping template (ICBM-53)
(Mazziotta et al., 2001), applying the same 9P transformation to both mutually aligned
scans. Intermediate transformation matrices were concatenated into a single transformation
file so that both screening and follow-up scans were resampled once during the linear
registration (see (Yushkevich et al., 2010) on the need for equivalent resampling of both
images to avoid one source of bias in analyzing longitudinal data). Globally aligned images
were re-sampled in an isotropic space of 220 voxels along x-, y- and z-dimensions with a
final voxel size of 1 mm3.

Brain masks that excluded skull, other non-brain tissues, and the image background were
generated automatically using a parameterless robust brain extraction tool (ROBEX)
(Iglesias et al., 2011). Separate ROBEX masks were created for mutually aligned screening
and follow-up scans in the ICBM space. A joint mask was then created using the union of
two masks, followed by 2 iterations of morphological dilation using the mean dilation tool
with a box kernel of size 3×3×3 in FSLMATHS (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
Fslutils), to ensure that all brain tissues were included. Finally, we applied the dilated joint
mask to uniformly “skull-strip” the screening and 9P registered follow-up scans, which were
later used to compute the longitudinal change maps, also known as the “Jacobian” maps.

Average group template – minimal deformation target
A minimal deformation target (MDT) was created from the scans of 40 randomly selected
normal subjects to serve as an unbiased average template image (Good et al., 2001) (Fig. 1).
MDT construction has been detailed previously (Hua et al., 2008) and is described only
briefly here. To construct an MDT, we first created an initial affine average template by
taking a voxel-wise average of the 9P globally aligned scans after intensity normalization.
Next, a non-linear average template was built after warping individual brain scans to the
affine template (Yanovsky et al., 2008, 2009). The above steps were repeated until a full-
resolution image registration was achieved. Lastly, the MDT was generated by applying the
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inverse geometric centering of the displacement fields to the non-linear average (Kochunov
et al., 2002, 2005).

Tensor-based morphometry and 3D longitudinal change maps
TBM is an image analysis technique that measures brain structural differences from the
gradients of deformation fields that align one image to another (Ashburner and Friston,
2003; Chung et al., 2001; Freeborough and Fox, 1998; Riddle et al., 2004; Thompson et al.,
2000; Toga, 1999). Individual Jacobian maps were created to estimate 3D patterns of
structural brain change over time by warping the 9P-registered and ‘skull-stripped’ follow-
up scan to match the corresponding screening scan. We used a non-linear inverse consistent
elastic intensity-based registration algorithm (Leow et al., 2005), which optimizes a joint
cost function based on mutual information (MI) and the elastic energy of the deformation.
The deformation field was computed using a spectral method to implement the Cauchy–
Navier elasticity operator (Marsden and Hughes, 1983; Thompson et al., 2000) using a Fast
Fourier Transform (FFT) resolution of 64×64×64. This corresponds to an effective voxel
size of 3.4 mm in the x, y, and z dimensions (220 mm / 64=3.4 mm). Color-coded maps of
the Jacobian determinants were created to illustrate regions of ventricular/CSF expansion
(i.e., with det J(r)>1), or brain tissue loss (i.e., with det J(r)<1) over time. These longitudinal
maps of tissue change were also spatially normalized across subjects by nonlinearly aligning
all individual Jacobian maps to a MDT, for regional comparisons and group statistical
analyses.

Group average maps
To illustrate the average amount of atrophy at each follow-up time-point, relative to the
screening visit, we computed the voxel-wise mean Jacobian map across subjects. These
maps were color-coded to show the average percentage of regional brain tissue loss and
ventricular/CSF expansion, relative to the screening scan (baseline).

Data-driven measures of temporal lobe atrophy
The use of a statistically-defined ROI based on an independent training sample was first
proposed for positron emission tomography images (Chen et al., 2009, 2010; Reiman et al.,
2008). We created a statistically-defined ROI (stat-ROI) based on voxels with significant
atrophic rates over time (p<0.00001) within the temporal lobes, in a non-overlapping
training set of 20 AD patients (age at baseline: 74.8±6.3 years; 7 men and 13 women)
scanned at baseline and 12-months. The notion of using a statistical ROI has been described
in prior work, and can be extended to use a variety of weighting methods (Gutman et al.,
2012). In this study, we computed a numerical summary of the 3D Jacobian map to estimate
the amount of cumulative atrophy, by taking an average within the data-driven, stat-ROI.
For the 20 AD patients selected to create the stat-ROI, we used a leave-one-out strategy so
that they could all be included in the final analysis (i.e., 19 AD patients were used for
creating a stat-ROI, which was used to derive a numerical summary for the left-out subject,
and this process was repeated by leaving out each of the other subjects).

Power analysis and sample size calculations
A power analysis was defined by the ADNI Biostatistics Core to estimate the sample size
required to detect a 25% reduction in the mean annual rate of atrophy, using a two-sided test
and standard significance level (α=0.05) for a hypothetical two-arm study (treatment versus
placebo). The estimated minimum sample size for each arm is computed from the formula
below. Briefly, β denotes the estimated change and σD refers to the standard deviation of the
rate of atrophy across subjects.
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Here zα is the value of the standard normal distribution for which P[Z<zα]=α and α is set to
its conventional value of 0.05 (Rosner, 1990). The sample size required to achieve 80%
power was computed in this study, referred to as n80. As the observation time ranged from 6
to 36 months, we computed the number of subjects required to detect a 25% reduction in the
overall atrophy, for clinical trials with a duration of 6, 12, 18, 24, and 36 months
respectively. Sample size estimates directly relate to the mean and standard deviation of the
atrophy measures. The 95% confidence interval (c) for the n80 statistic was computed based
on bootstrap resampling with 10,000 samples, with a bias corrected and accelerated
percentile method (Davison and Hinkley, 1997; Efron and Tibshirani, 1993).

Bias estimation
To estimate any potential additive bias from the TBM method, we assessed the linearity of
the brain change over time in a subgroup of N=163 healthy subjects who had a complete
scan series at screening, 6, 12, and 24 months. Bias was quantified by estimating the offset
or intercept, with 95% confidence intervals, at time zero, by fitting a linear mixed effects
model through measures of cumulative atrophy at 6, 12, and 24 months. The lmer and other
statistical functions from the R statistical package (version 2.14.0: library (lme4)) were used
to estimate the intercept and 95% confidence intervals.

Brain atrophy rates
When changes are small (e.g., over short intervals), the percentage of cumulative atrophy is
a close approximation to the rate of atrophy. The relationship between the rate of atrophy
and the eventual total cumulative volume loss is formulated below (t is the scan interval, in
months):

Or alternatively,

Excluding data and its impact on n80 estimates
We did not exclude any data in our TBM analysis; instead we used the entire ADNI1 dataset
available at the time of download. To show how selective data exclusion affects the power
analysis, we simulated a process of gradual data removal and demonstrated how it might
affect n80 estimates. We identified MCI subjects with positive numerical summaries of
temporal lobe atrophy (meaning an apparent “gain” in tissue, which is not biologically
plausible). We gradually removed them – i.e., a small proportion of the overall data – from
the study population, and computed n80 estimates and confidence intervals after each data
point removed, at 12 and 24 months respectively. The MCI group consisted of elderly
subjects with possible prodromal Alzheimer’s disease, so no tissue growth was expected.
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Any positive numerical summaries may result from imaging noise, or unknown issues in
image acquisition, pre and post image processing, or some combination of the above.

Results
TBM as an unbiased imaging biomarker

It is well established that healthy aging brains exhibit a fairly constant and very low rate of
atrophy over time. We therefore used a subgroup of healthy subjects (N=163) who had
complete visits at 6, 12, and 24 months to estimate a linear model for brain atrophy over
successive visits. As an estimate of bias, the intercept estimate and its 95% confidence
intervals were 0.06% [−0.07, 0.18] for TBM-derived numerical summaries of cumulative
atrophy (Fig. 2). The actual scan acquisition intervals deviate from the nominal ones in
certain subjects. We also estimated the linear model for brain atrophy using the actual scan
interval in days (Inline Supplementary Fig. S1). The fitted intercept and confidence intervals
were 0.009% [−0.12, 0.13]. We concluded that there was no evidence of methodological
bias, as the 95% confidence interval covered zero, and the intercept estimate was extremely
close to zero.

Inline Supplementary Fig. S1 can be found online at http://dx.doi.org/10.1016/j.neuroimage.
2012.10.086.

To visualize the progression of measured brain atrophy within each subject, please see the
scatter plot of cumulative atrophy (%) with lines connecting the points at 6, 12, and 24-
months for each individual (Inline Supplementary Fig. S2).

Inline Supplementary Fig. S2 can be found online at http://dx.doi.org/10.1016/j.neuroimage.
2012.10.086.

Subjects with complete 2-year visits
As different numbers of subjects are available at various follow-ups due to attrition or other
reasons, it is difficult to compare patterns of brain degeneration over time using the full
sample, as slightly different subjects would be represented at each time-point. We therefore
used a subset of subjects with complete scan series at screening, 6, 12, 18 (MCI only), and
24 months to establish the trends of brain atrophy over a 2-year follow-up period, which
include 98 AD (age at screening: 75.2±7.4 years, 52 M/46 F), 207 MCI (age: 74.9±7.0
years, 139 M/68 F), and 163 healthy subjects (age: 76.0±4.9 years, 83 M/80 F; same
subjects as in Section 3.1) scanned at screening, 6, 12, 18 (MCI only) and 24 months.

Cumulative atrophy and n80 estimates
The color panels in Fig. 3 show average maps of cumulative tissue change at 6, 12, 18 (MCI
only), and 24 months. In AD, MCI and normal groups respectively, a greater amount of
brain degeneration, indicated by ventricle/CSF expansion (red color) and tissue loss in the
temporal lobe areas (blue color), was observed over a longer follow-up period (24>18>12>6
months). As expected, the AD group showed the most severe regional brain degeneration:
about 10–20% ventricular expansion and 5–10% tissue loss in the temporal lobes over 2
years. In contrast, the healthy elderly group showed only mild ventricular expansion with
little to no temporal lobe tissue loss. The MCI group showed an intermediate level of
atrophy. The average rates of ventricular expansion are 8.7%, 5.9%, and 3.5% per year, in
AD, MCI, and controls, respectively, comparable to ventricular volume change measures in
the other studies (Gutman et al., 2012; Nestor et al., 2008).

Hua et al. Page 8

Neuroimage. Author manuscript; available in PMC 2014 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://dx.doi.org/10.1016/j.neuroimage.2012.10.086
http://dx.doi.org/10.1016/j.neuroimage.2012.10.086
http://dx.doi.org/10.1016/j.neuroimage.2012.10.086
http://dx.doi.org/10.1016/j.neuroimage.2012.10.086


Next, numerical summaries were derived from a “stat-ROI” (statistical region of interest) to
quantify cumulative temporal lobe atrophy, which were later used to compute sample size
estimates (n80s) in hypothetical clinical trials. As summarized in Fig. 4a and Table 2, a
greater amount of cumulative atrophy was observed for each subsequent follow-up period in
every diagnostic group. The MCI group showed about twice as much, and AD showed 3–4
times, the rate of atrophy observed in normal aging.

In power analyses, fewer subjects (i.e., smaller n80s) were needed for a hypothetical clinical
trial when the follow-up period was longer (Fig. 4b and Table 2). For hypothetical clinical
trials intended to slow the rate of brain atrophy in AD, 106, 58, and 39 patients were
necessary for hypothetical trials of duration 6, 12, and 24-months respectively. For clinical
trials aimed at early or minimally symptomatic patients, i.e., the MCI group, 312, 124, 111,
and 95 subjects were required for trials with duration of 6, 12, 18, and 24-months
respectively. Finally, some trials aim to prevent disease onset and progression even in
cognitively normal, healthy controls (Eastman, 2012). We therefore calculated sample size
estimates for the healthy population, and the n80s were 785, 201, and 116 for trials with
duration of 6, 12, and 24-month respectively (see Discussion for issues with computing
power estimates for controls). Compared to AD and MCI, normally aging subjects showed a
very slow and steady rate of degeneration, with lower variance overall, within the group.

Brain atrophy rates and evidence of deceleration
Brain atrophy rates were 2.7% in AD, 1.7% in MCI, and 0.8% in normal controls, estimated
using the 12-month cumulative atrophy measures of subjects with complete 2-year visits
(Table 2). The 12-month data was chosen rather than the 6-month data (first time point), as
atrophy measurements over a shorter interval show a lower signal to noise ratio. We then
used the formula described earlier to compute “expected cumulative atrophy” based on an
assumption of constant atrophy rate, and compared the results with the “measured
cumulative atrophy” (Table 2) to illustrate the trend of deceleration or acceleration (Fig. 5).
There was a small but noticeable deceleration. At 24 months, the amount of deceleration is
the greatest in AD, less in MCI, and minimal in controls, which accounts for 6.1%, 6.9%,
and 6.0% of the total measured cumulative atrophy in AD, MCI, and controls, respectively.

Full ADNI-1 data set
We analyzed all available 1.5 Tesla MR scans that had passed QC and gone through the 4-
step image correction pipeline, identified as “scaled” images in the ADNI database.
Numerical summaries were derived from a stat-ROI inside the temporal lobes. From these,
we computed sample size estimates in hypothetical clinical trials. Similar to results derived
from subjects with complete 2-year visits (Table 2), the full data set showed a greater
amount of cumulative atrophy with longer follow-up intervals (up to 3 years) in each
diagnostic group (Table 3). Fewer subjects were available at later time points due to
attrition. The average annual attrition rate for the entire ADNI-1 study was around 20%, (1st
year: 19%, 2nd year 21%) with higher attrition in AD (1st year: 27%, 2nd year 24%) and
MCI (1st year: 19%, 2nd year 25%) compared to normal individuals (1st year: 14%, 2nd
year 12%). Common reasons for attrition included various health-related or personal
limitations (~60%), death (5–10%), adverse events (4–8%), etc.

Drug trial enrichment
Many drug trials preferentially enroll participants who are more likely to decline, based on
the premise that therapeutic effects may be easier to detect in subjects with greater brain
changes. This approach is sometimes known as “enrichment”. We tested two widely-used
drug trial enrichment strategies, based on ApoE status and family history of dementia, using
the 24-month data (N=521). Although these methods are used in current clinical trial design,
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it is important to test whether they offer demonstrable advantages when used in conjunction
with the MRI measures of this paper.

ApoE status
Risk for late-onset Alzheimer’s disease is associated with a person’s ApoE genotype on
chromosome 19 (Pericak-Vance et al., 1991). The ApoE gene comes in three major forms or
alleles: ε2, ε3, and ε4. The ApoE ε2 variant is rare and has been shown to be protective
against Alzheimer’s disease (Corder et al., 1994). ApoE ε3, the most common allele, may be
considered as neutral (Saunders et al., 1993b; Schachter et al., 1994). ApoE ε4, present in
~40% of people with late-onset AD but only a sixth to a quarter of the normal elderly
population, is linked to increased risk of developing AD, and the risk is dose-related (Corder
et al., 1993; Saunders et al., 1993a).

We divided each diagnostic group into “ε4 carriers” (ε4/ε3 or ε4/ε4) and “non-carriers” (ε2/
ε2, ε2/ε3 or ε3/ε3), and computed cumulative atrophy at 24 months, as well as n80
estimates. Sixty-nine AD (46 ε4/ε3 and 23 ε4/ε4), 124 MCI (93 ε4/ε3 and 31 ε4/ε4), and 48
normal individuals (43 ε4/ε3 and 5 ε4/ε4) carried one or two copies of ε4, while 33 AD (3
ε2/ε3 and 30 ε3/ε3), 111 MCI (11 ε2/ε3 and 100 ε3/ε3) and 122 normal (2 ε2/ε2, 20 ε2/ε3
and 100 ε3/ε3) were non-carriers. We excluded a small number of subjects with a genotype
of ε2/ε4, because it is not clear how to treat the aggregate effect of the two opposing alleles
(3 AD, 9 MCI, and 2 normal), and this might complicate interpretation. As summarized in
Table 4, a faster rate of brain atrophy was observed in ε4 carriers versus non-carriers, in all
three diagnostic groups. For the MCI group, the sample size estimate of a 24-month trial in
ε4 carriers (n80=73, c=[57,94]), was half of the estimate for non-carriers (n80=145,
c=[111,206]). A trend-level enrichment effect of the ApoE status was observed for the AD
group, but not for the normal aging group. The difference in statistical significance here
could just be due to the smaller sample sizes for AD and controls, relative to the larger
group of MCI subjects.

Family history of dementia
Information on each participant’s family history of dementia is available via the Family
History Questionnaire from the ADNI clinical data. We created two categories based on
parental family history. We found no difference in the 24-month cumulative rate of atrophy,
or in the n80 estimates, comparing subjects with parental family history of dementia versus
those without, in all three diagnostic groups (data not shown), using the TBM approach.

Selective data exclusion as a source of bias on sample size estimates
In our TBM analysis, we did not exclude data for any reason. Substantial bias can be
introduced if selective data exclusion is allowed. Typical reasons for selective data exclusion
include (1) software failure on certain scans, (2) outlier or extreme outcome measures
identified by statistical analyses, and (3) biologically implausible measures, that might be
noticed by a knowledgeable observer visually rating the scans.

We used the MCI sample at the 12- and 24-month time points to demonstrate how selective
data removal impacts the sample size estimates. As “tissue expansions” (i.e. positive
numerical summaries for temporal lobe atrophy) are unexpected in this elderly population
with possible prodromal Alzheimer’s disease, we identified the MCI subjects with positive
tissue change and successively removed them, with a rank order to eliminate the greatest
outliers first. We note that this would not be regarded as good statistical practice, but is in
fact done in many studies where the analysis software does not give a reasonable answer. In
many cases, outliers are removed because the program fails altogether, and there is no
sensible value to use. We computed n80 estimates and confidence intervals after each data
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point removal, at 12 and 24 months respectively, to simulate the potential effect of data
removal on sample size estimates (Fig. 6). At 12 months, 25 out of 326 MCIs had positive
numerical summaries. The n80 dropped from 135 [114,167] with no data removal to 93
[79,111] after removal of all 25 potential “outliers” – a 31% reduction of n80 with 7.7% of
data thrown out (Fig. 6a). Only 4 MCI subjects out of a total of 244 had positive numerical
summaries at 24 months. The n80 changed from 109 [92,131] to 100 [85,119] after removal
of the 4 subjects or 1.6% of the data with positive measures (Fig. 6b).

Discussion
ADNI is one of the world’s largest neuroimaging consortia studying Alzheimer’s disease
and aging. The entire dataset and a representative set of derived analytical results are shared
among the academic community and available to the general public, allowing
methodological scrutiny, replication, and direct comparison of different image analysis
methods (Fox et al., 2011; Weiner et al., 2012). Registration-based imaging biomarkers are
liable to three common but avoidable sources of bias, including asymmetric interpolation in
global image registration (Yushkevich et al., 2010), failure to fully enforce inverse-
consistency or transitivity (Christensen and Johnson, 2001; Hua et al., 2011; Thirion, 1998),
and selective data exclusion. Any or all of these problems may lead to biased comparisons
of methods or undue optimism about how the methods would perform in a real clinical trial
(Fox et al., 2011).

The first source of bias in longitudinal processing can be addressed by using identical
interpolation for both the baseline and follow-up scans, and treating scans in a way that does
not depend on their order. Inverse consistent registration algorithms ensure that the
correspondence does not depend on the order of the two images. In practice, inverse
consistency can be quite intricate to achieve as many so-called inverse-consistent methods
penalize deviations from inverse-consistency rather than completely removing it (Hua et al.,
2011). Methods that enforce inverse consistency do not however explicitly enforce
transitivity; in general, transitivity errors will remain even after inverse consistency is
enforced. For example, it is possible to create a registration method that simply cannot
produce maps that are not inverse consistent – this can be done by simultaneously
computing the forward and backward maps as a pair, using methods such as those in Leow
et al., 2005. By contrast, transitivity errors have to be computed and minimized for each
dataset consisting of 3 or more time points, by registering all brains at once, so that the
vectors aligning them obey the law of vector addition. For a time-series of images from an
individual, all data can be given to the algorithm at once, and, if the scans’ temporal order is
known, and provided as an additional constraint on the allowable mappings, a set of
deformation fields can be computed that obeys transitivity. If this is done, the results are
“transitive by construction”. Because this involves redistributing error vectors among a set
of actual mappings, the mappings of earlier time-points may change if additional time-points
are added. For the final source of bias – selective data exclusion – a standard dataset will
help to ensure a more meaningful comparison of different analysis methods.

In an alternative indirect approach for bias correction, a linear regression of atrophy
measures at multiple time points is used to estimate a non-zero intercept, which serves as a
proxy for bias estimation and is subtracted from the observed change (Holland et al., 2012;
Yushkevich et al., 2010). The non-zero intercept is an indirect measure of bias, which could
be an aggregate of multiple sources of bias, so simply subtracting the intercept might not
correct the bias. We advocate trying to identify and address any sources of bias at each step
of the image processing pipeline, although this is more difficult.
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Compared to Hua et al. (2011), we implemented two major changes in this analysis, in
addition to analyzing the full ADNI-1 dataset. First, a uniform brain mask was generated
based on each longitudinal scan pair including a screening and follow-up scan. Brain masks
were used to exclude non-brain tissues and the image background, prior to nonlinear
registration. This implementation made TBM more robust, by minimizing the influence of
non-uniform background intensities in some scans. Second, the current manuscript used the
non-linear inverse consistent elastic intensity-based registration algorithm, known as
“3DMI” (Leow et al., 2005), which replaced the inverse consistent nonlinear registration
algorithm using a regularization term of the symmetrized Kullback–Leibler distance, known
as “ic-sKL-MI” (Hua et al., 2011). The ic-sKL-MI was initially designed to improve image
registration resolution and accuracy. There was a very small residual intercept of 0.28%,
when the level of atrophy over successive time-points was modeled using linear regression,
so we discontinued the use of ic-sKL-MI until further improvements can be made. It is
worth recalling that the two kinds of registration program produce warping fields with
different formal properties – the deformation maps over time obey mathematical laws that
differ depending on the formulation. Registration methods based on elasticity tend to
minimize an elastic energy, which penalizes severe linear and volumetric compressions and
expansions. The sKL-based methods are somewhat different as they increase the overall
uniformity of the Jacobian field – implicitly, they also penalize severe volumetric
compressions and expansions. Further study of these functionals is needed, but since 3DMI
(the elastic method) tended to eliminate small offsets in longitudinal time-series, it seems
preferable at this time.

Defining a standard ADNI dataset to ensure an objective methodological comparison
As noted in Wyman et al. (2012), the ADNI MRI Core recently made an effort to define a
standard dataset to help compare different analysis methods side-by-side. Most ADNI
publications, to date, have used a different subset of data; much of this was unintentional
and unavoidable as a series of publications came out as more data progressively became
available. In addition, problems with a small number of scans were only noticed well into
the study (e.g., scan series in which the scanner vendor was changed during the time-series);
(Wyman et al., 2012). Recognizing the effort and time necessary to finalize a standard
dataset, we analyzed all available scans at the time of download. Data analysis was
concluded on June 1, 2012. We provide a full list of subjects analyzed in the paper (Inline
Supplementary Table S1). For scans processed in this paper, as well as scans added after the
completion of data analysis, we will upload the full results to the ADNI website (https://
ida.loni.ucla.edu). The findings of the paper are unlikely to change when a few scans are
changed. Given the rate at which errors are discovered, it might be an unachievable goal to
finalize a standard dataset that is free from all possible sources of error. Even so, it provides
a reasonable practice to report all available data, while acknowledging that subjects may still
be added or removed from the standard ADNI-1 dataset.

Inline Supplementary Table can be found online at http://dx.doi.org/10.1016/j.neuroimage.
2012.10.086.

Robustness of image analysis techniques or failure rate
The robustness of an image analysis technique may be defined as percentage of analyzable
scans relative to all available data. As clinical trials typically must report outcomes on all
subjects assessed, this presents serious problems for methods where an algorithm fails or has
low robustness. If a method is based on segmentation, for example, some algorithms may
not give reliable segmentations on some fraction of the data. If this data is then excluded
from the results, the performance – and even the applicability – of the method in a real
clinical trial may be unclear. For example, if method A fails on 10% of the data but those
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subjects are subsequently excluded, then as we have shown, sample size estimates based on
that data may be more than 30% too low. In our TBM analysis, we did not exclude any
scans, and analyzed the full ADNI-1 dataset that passed basic image quality QC. As other
analysis methods do report successful results after removing outliers (e.g., around 10% of
the data were excluded in (Holland et al., 2009, 2012), a simulation was run to show how
selective data exclusion impacts sample size estimates (see Section 3.5).

Relative versus absolute change
A critical consideration when estimating sample sizes for treatment response is whether to
include effects seen in normal aging as potentially treatable effects. Some researchers argue
that the relative change – or the rate of change corrected for normal aging – should be
defined as the only treatable effect (Holland et al., 2012). The power analysis was conducted
by calculating sample size estimates using the variance parameters from the patient cohort,
with the treatment effect defined as the difference between the mean rates of change in the
patients and healthy controls. The advantage of this approach is that it can partially cancel
out any systematic methodological bias, reducing the overoptimism of power calculations.
This suggestion, however, creates several challenges. First, many current MCI or AD trials
do not enroll healthy subjects as controls. Second, a growing number of prevention trials
now enroll healthy subjects and treat them (Eastman, 2012; Ross et al., 2012), in which case
they would be considered as a “treatment group”. A large body of work shows that some
pathological processes – such as vascular degeneration – undoubtedly occur in normal
controls, and treatments may resist their progression to some extent, whether or not a person
is considered ill or shows clinical signs sufficient for an AD or MCI diagnosis.

The ADNI Biostatistics Core advocates using the absolute change, as the potentially
treatable rate of atrophy, as atrophy and cognitive decline with normal aging cannot be
considered impervious to treatments developed to resist AD, as many of the contributing
biological processes are the same. In real clinical trials, a treatment group is typically
compared against a placebo group to assess drug effects. The subtraction of the placebo
group mean could serve a dual purpose of isolating treatment effects and reducing some
sources of bias in power analyses.

In this manuscript, we computed sample sizes needed to detect a mean reduction in the
absolute rate of change in each diagnostic group, while providing the full data necessary to
compute effects corrected for normal aging (Tables 2 and 3).

Confounding factors in methods comparisons
Several research laboratories have computed longitudinal brain imaging measures, and made
their results publicly available. There is a great interest in determining which of the many
reported techniques is most sensitive for measuring brain changes and factors that influence
them, while remaining robust enough to give plausible measures for all available scans that
pass basic scan quality QC, and while avoiding known sources of measurement bias
(Wyman et al., 2012).

In a recent publication comparing longitudinal brain structural measures in ADNI, a
commercial method known as quantitative anatomical regional change (Quarc) was
compared to several methodologies including FreeSurfer Longitudinal v.4.4, FreeSurfer
Cross-sectional v.4.3, Boundary Shift Integral (BSI), and TBM (Holland et al., 2012). The
authors concluded that Quarc provided the most powerful change biomarker among all
methods, in the sense of requiring low sample sizes to detect a given degree of slowing in
the rate of atrophy. As a critical difference and possibly a major source of improvement,
Quarc was run on “averaged” MRI scans, by averaging the MP-RAGE scans acquired back-
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to-back as part of ADNI, while the other processing sequences used only one of the scans
selected by the Mayo QC pipeline. This seemingly minor point may have given Quarc an
apparent 40% SNR advantage over the others that would not be achievable in the more
common situation where only one scan is collected. While the developers may advocate that
all available data should be used, it is not clear that future studies will collect a back-to-back
pair of MP-RAGE scans; for objective comparisons, future studies may need to target the
same scan data. Moreover, Quarc used additional QC steps (QCPASS=1) to exclude 17% of
data that either failed during Quarc processing or generated visually unsatisfactory results.
This is another significant source of bias in the comparison, and may make the method
unusable for many practical situations, including clinical trials.

To achieve a meaningful comparison and accelerate the development of imaging biomarkers
compatible with rigorous clinical trial regulations, we suggest the following practices:

1. Analyze a standard dataset when available

2. When a standard dataset is unavailable, report the date of image download, number
and IDs of the downloaded subjects, and number and IDs of subjects included in
the final report, to facilitate an assessment of robustness of the image analysis
techniques

3. Disclose full details of all pertinent image processing steps

4. Test for and address sources of bias at each of the image processing steps

5. Describe additional QC steps required for specific algorithms, and specify reasons
for drop-out or exclusion of unanalyzable endpoints, with any data throw-out
avoided or justified.

Evidence of deceleration in brain atrophy
It is important to note that the acceleration or deceleration of atrophy can only be reliably
evaluated using the subjects with a common and complete set of visits, as results shown in
Table 2. The full sample, which contained a gradually reduced sample size at each time-
point (Table 3), was liable to attrition bias, so it is important not to simply regress all
available scan data against time, in estimating group trends. For example, in the full sample,
people who remained in the study tended to be more healthy than people who dropped out,
so the later time points (e.g., 24, 36 months) might accumulate a group of subjects who were
healthier or less impaired at baseline than the people represented at the earlier time points.

We observed a small but noticeable deceleration in brain atrophy, comparing the
“cumulative atrophy expected assuming a constant rate of decline” versus the “measured
cumulative atrophy” (Fig. 5). The deceleration accounts for about 6–7% of the overall
measured change at 24-months. This could be attributed to a biological deceleration,
transitivity errors, and/or regularization effect. Transitivity error refers to a difference
between (1) the total atrophy estimated from the direct mapping of 0 to 24 month scans,
relative to (2) the composition of mappings from 0 to 12, and 12 to 24 months (Hua et al.,
2010). This is a common source of error in nonlinear registration, which has been modeled
and extensively discussed in a prior publication (Hua et al., 2010). Specifically, registration
problems involve the tuning of deformation field parameters, and the state vector of the
parameters is not guaranteed to follow the same path through the 12-month time point if that
data is not used as a constraint. Such a transitivity error could be “hidden” in a fully-4D
registration method that includes all the time points and performs registration on time-series
of scans all at once, while adjusting the mappings to reduce the transitivity errors. As noted
in Hua et al. (2011), methods to do this include transform reconciliation (Woods et al.,
1998), and group-wise registration (Leporé et al., 2008). These methods can compute a set
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of mappings between all N brains in a study, and they use the internal consistency among
mappings (or triplets of brains) as a means to reduce errors of various kinds, or simply to
redistribute the mean error among all the mappings. Another possibility for an apparent
slight deceleration of atrophy is due to the regularization effect, where all follow-up scans
are longitudinally aligned to the corresponding screening scans, using the same Cauchy–
Navier elasticity operator, irrespective of the time interval or diagnostic group. As a result,
the atrophy progression might appear to artificially decelerate, with some dependency on the
overall amount of atrophy. We expect a minimal impact as the maximum change in the
study is around 5% (AD-24Mo), a relatively small change compared to prior cross-sectional
studies using the same algorithm to detect large scale changes (10–30%). However we
cannot entirely rule out the possibility that the slight trend for apparent deceleration in
atrophy rates is due to the regularization in spatial warping.

Bias-variance trade-offs
It could be argued that if we computed the atrophy over each successive interval instead of
always to baseline, much or all of the deceleration would disappear, but at the price of
additional variability due to noise, and the difficulty of computing robust mappings when
changes in the images are extremely small. Given the importance of the accuracy of a
biomarker for clinical trials, one could argue that a less biased measure might be preferable
unless it was catastrophically more variable. In support of this line of argument, in Hua et
al., 2011, we modeled and discussed the transitivity error extensively. We tested the
hypothesis of a systematic transitivity error – the direct mapping from 0 to 24 months
(which is used to estimate atrophy) showed slightly less change than the composition of
mappings from 0 to 12, and 12 to 24 months. The transitivity error was small in all areas of
the brain, around 20 times smaller than the estimate of the true change. As this error was
weakly correlated with the true biological change, subtracting it may even reduce the
discriminative power of the measures. Clearly, when evaluating a registration method on a
time-series, one could consider a step-wise mapping of all the scans, but this could even
cause an over- or under-estimate of the true change, if there were a lot of noise in the scans.
Ultimately, fully-4D registration methods may be desirable that can enforce a trajectory
through all the scan data. Some of these methods have the undesirable effect that new scans
might change the estimate of atrophy for earlier ones. This is reasonable from a Bayesian
point of view, but perhaps somewhat disconcerting to have to re-run the full analysis, and
change prior results, when new scans come in.

Using the composition of mappings to measure change, in theory, could reduce the
transitivity error by performing repeated compositions. For example, if we break down the
direct mapping of scans from 0 to 36 months into compositions of mappings from 0–6+6–
12+12– 18+18–24+24–36 (5 registration steps instead of 1), the transitivity error may be
reducible by around 4-fold; even so, other types of errors associated with image registration
(e.g., inverse consistency errors) could be amplified by 4 times and remain concealed.

In Hua et al., 2011, we presented a detailed discussion on ways to further reducing
transitivity errors, but as noted before, most of the proposed solutions do not remove the
error but rather redistribute the errors.

Linear versus exponential model
The annual rates of atrophy are low, 2.7% in AD, 1.7% in MCI, and 0.8% in normal elderly,
and the observation time is short, 0.5 to 3 years, the difference between a linear and an
exponential model is very hard to detect. The R2 (reflecting goodness of fit) for a regression
model fitting the Jacobian values against time is 0.99904 using the linear model, and 0.9992
using the exponential model, using the MCI data at 6, 12, 18, and 24 months. We chose the
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linear over the exponential model for simplicity. However we also consider that in reality
there may be several sources of nonlinearity, both biological and technical.

Mathematically, an exponential decline in volume (Jacobians) may be expected under the
assumption that the rate of volume loss depends on the amount of tissue present (section
2.11). When changes are small (e.g. over short intervals), the percentage of cumulative
atrophy is a close approximation to the rate of atrophy. In other words, if the overall atrophy
that has accumulated at the end of the study is divided into equal time intervals, those
changes may be reasonable approximations of how much change actually occurred over
those intervals. This assumes a linear volumetric loss of tissue, or a time interval so short
that departures from linearity are not detectable. One could also posit an “exponential
decay” model where the volume of tissue lost over each successive time interval is a fixed
proportion of the tissue remaining at the start of the interval. Although we have studied both
of these models, the overall duration of ADNI is still relatively short, and it is difficult to
make a strong case for one model in favor of the other.

Biologically implausible measures
In MCI, it is unlikely that “tissue growth” occurs, or that any biological process is leading to
positive numerical summaries of temporal lobe atrophy. While neuroplasticity is possible in
principle, by far the most likely effect is that noise or error during acquisition or pre-
processing does lead some measures to show a positive change, even if their true mean is
zero (this is evident by processing short-interval scan pairs from the same subject). We
identified 25 MCI subjects at 12-months and 4 MCI subjects at 24-months, who had positive
numerical summaries, i.e., biologically implausible measures. They accounted for 7.7% and
1.6% of the total available number of subjects at 12- and 24-months respectively. Possible
sources of biologically implausible measures include imperfect global image registration,
slightly different noise levels for the scans at different time-points, subject motion, or
different intensity profiles in the baseline and follow-up images, and scaling errors due to
scanner calibration and/or image corrections.

Random and non-random missing data
In modeling the effect of selective data removal, we note that removing subjects with
greatest tissue “gain” is “non-random” – it focuses on results that are biologically
implausible. Even so, some might advocate that other kinds of data exclusion – especially
data removed “at random” might be defensible or even desirable. In some studies, a subject
may be excluded because they have an unusual anatomy (e.g., very large ventricles) at all
timepoints, which may have a lesser effect on the group average rate of change. As
described in the methods, the ADNI MRI quality control center at the Mayo Clinic excluded
failed scans due to motion, technical problems, significant clinical abnormalities (e.g.,
hemispheric infarction), or changes in scanner vendor during the time-series (e.g., from GE
to Philips). Subjects with unusual anatomy were removed at this step. The remaining
subjects were uploaded to the ADNI database and they have no major scan quality issues
and should be analyzed by all sites. Several image analysis approaches have additional built-
in quality control processes in the image processing pipelines to exclude failed scans, e.g.
some methods use terminology of the following kinds to flag excluded scans:
OVERALLQC=”Pass” or “Partial”; Boundary Shift Integral, VENTACCEPT=1,
REGRATING<=3, KMNREGRATING<=3; Quarc, QCPASS=1. Scans that failed QC will
have missing values, which are more likely to be “non-random missing data” as they are
perhaps not so dependent on the actual rate of atrophy in the subject.
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Sample size estimates
Sample size estimates directly relate to the mean and variance (standard deviation) of the
atrophy measures. Both the mean level of cumulative atrophy and its variance increased
monotonically with longer inter-scan intervals (Table 2 and 3). As the mean rose faster than
the variance with longer intervals, incrementally greater effect sizes and smaller sample size
estimates were observed. In theory, the random measurement errors arising from small
variations in scanner calibration and RF bias fields remain stable while systematic atrophies
accumulate over longer intervals, leading to greater signal to noise ratios. However, longer
intervals do not necessarily translate to better sample size estimates due to the trade-off
between observation time and attrition (Hua et al., 2010).

ApoE genotyping for drug trial enrichment
Strategies for drug trial enrichment using ApoE status were highly effective for the MCI
cohort, marginally effective for the AD cohort and not obviously effective at all in the
healthy controls. The sample sizes of AD and controls are substantially smaller than that of
the MCI group, which might have affected the power of statistical analysis, thus we should
not rule out the possibility of using ApoE genotyping for trial enrichment in AD and
controls. Fewer controls had ε4 compared to MCI and AD, which might further undermine
the statistical power in detecting an ε4 effect in the control group. For the 24-month data,
there were 20 (12%), 100 (59%), 43 (25%), and 5 (3%) controls who had the genetic profiles
of ε2/ε3, ε3/ε3, ε4/ε3, and ε4/ε4 respectively, compared to 11 (5%), 100 (42%), 93 (40%),
and 31 (13%) in MCI, and 3 (3%), 30 (29%), 46 (45%), 23 (23%) in AD. As shown in Fig.
3, both AD and MCI had prominent atrophy localized in the temporal lobe areas, while the
healthy controls had a very low rate of atrophy spread somewhat diffusely throughout the
brain. The stat-ROI was trained on 20 AD subjects to identify the brain regions most likely
to show significant atrophy in AD (a focal effect), but they were not optimized for picking
up ApoE’s effect on normal aging (a diffuse effect).

Family history of dementia
We found no difference in the 24-month cumulative rate of atrophy, or in the n80 estimates,
comparing subjects with versus those without parental family history of dementia. This does
not mean that it is pointless to use family history as a basis for enrichment, only that we did
not detect any benefit of using it for the TBM measures used here in the full ADNI sample.

Localization of changes with TBM
The volumetric change in AD appears to be most severe in temporal lobe white matter
(WM) rather than gray matter (GM) (Fig. 3), which might seem contradictory as AD is
widely accepted to be a predominantly hippocampal and cortical gray matter pathology. It
had been difficult to quantify WM change in conventional MRI due to the lack of visible
anatomical boundaries that would be required to parcellate WM, until the recent
development of voxel-based approaches. Several studies using diffusion tensor imaging
(DTI), relaxometry, and functional connectivity studies have provided substantial evidence
for diffuse WM abnormalities in AD (Buckner et al., 2009; Wozniak and Lim, 2006).
Myelin breakdown and Wallerian degeneration both lead to WM atrophy, perhaps secondary
to the effect of cortical neuronal loss in AD (Bartzokis, 2011; Bartzokis et al., 2006, 2007;
Spires-Jones et al., 2009). As both GM and WM changes are occurring in AD, a key
question is which of the MRI-derived measures is the most reliable for detecting dynamic
changes over time with greatest effect sizes and accuracy. As a percentage, more cortical
and hippocampal GM may be lost over time than WM. Even so, the effect sizes for the
changes in GM may be lower than expected, as these structures are convoluted and difficult
to measure accurately. The cortex is thin and the hippocampus is narrow, accounting for a
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small proportion of the total voxels in whole brain TBM analysis. As a result, the changes in
the cortex and hippocampus may be greatest, as a percentage of their volume, but when
pooling data across subjects voxel-by-voxel, the interiors of large white matter structures
tend to be better registered than the cortical and hippocampal boundaries once all the data
are aligned. Therefore, coherent patterns of WM atrophy are more likely to be reinforced
across all members of a group than at boundary voxels where loss patterns may be less well
registered, even after nonlinear registration.

Geometrical scaling in ADNI (scaled versus scaled_2)
ADNI-1 employed phantom-based geometrical scaling of MR images to improve spatial
calibration of scans and longitudinal stability across all acquisition sites. For a subset of
scans, both “scaled” and “scaled_2” images are provided when errors in phantom based
scaling were identified and reversed to no scaling. Note that in scaled_2 images, the scaling
errors were not corrected; the scaling factors were changed to 1 for all axes that were
identified as faulty. The difference in scaling was in the range of 10−4, so the choice of
scaled versus scaled_2 scans is not likely to affect conclusions substantially. Even so, we
have tested this formally, and a recent publication from our group found a high degree of
correlation and no detectable difference between all available scaled and scaled_2 images,
using the TBM approach (Ching et al., 2012).

Average brain template
The average brain template or MDT was created from 40 randomly selected normal
subjects. Another design is to create the MDT based on randomly selected subjects from the
entire study, including subjects from different diagnostic groups. The later design has the
advantage of equally representing the entire study population but it might add complications
in interpreting the results of several sets of studies including different groups, especially for
cross-sectional studies where the MDT serves as the reference. For longitudinal studies such
as the current manuscript, the choice of MDT has a negligible impact, as it does not affect
the estimates of brain change rates in each person. The brain change rates are estimated by
nonlinearly registering a follow-up scan to its screening scan, with the screening scan
serving as the reference, not the MDT. Spatial normalizations among different brains enable
regional comparisons and group analyses to be performed.

Limitations
Some limitations of this study must be mentioned. The use of n80 as the sole guide for
estimating sample sizes for real clinical trials has been questioned from multiple points of
view, and its limitations should be understood by those using it as a guide. First, a real
treatment effect may slow cognitive decline but not atrophy, or a treatment may slow
atrophy with no detectable clinical benefit. For that reason, imaging measures would not be
used as the only outcome measure in any clinical trial. Second, the use of a statistical region
of interest will isolate regions most likely to show deterioration, but a real treatment may
exert its effects on brain regions other than these, or even on processes not observable with
anatomical MRI or any imaging modality. As a result, multiple imaging measures and
modalities, as well as scanning methods not yet developed, are likely to be advantageous to
avoid missing potentially beneficial effects. Finally, any direct comparison of sample size
estimates for different imaging metrics may overlook the differential value of slowing
cognitive decline versus imaging decline. Clearly, the benefit to the patient of a 25%
reduction in the rate of amyloid accumulation or brain atrophy may be very different from
the value of a 25% reduction in the rate of cognitive decline, even if the latter requires far
more subjects to detect, or requires a more expensive clinical trial. For the same reason, it
may not make sense to compare imaging measures head-to-head that do not assess the same
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part of the brain or do not assess the same signal. Even so, any trial using MRI may be able
to benefit from the diverse range of measures now available as surrogate markers of AD
progression.

Although the leave-one-out approach used to implement the stat-ROI should give unbiased
numerical summaries for the left out subjects, these summaries may not be totally
independent of each other. The loss of the independent and identically distributed (i.i.d.)
variance may cause a slight bias in statistical tests requiring an i.i.d. noise assumption. The
MCI group contains a much larger proportion of men (139 M:68 F) than both the AD
(52:46) and healthy control (83:80) groups. Sample size estimates based on the full ADNI
cohort might be partially influenced by sex and other demographic factors not controlled for
in ADNI. Finally, 9-parameter linear registration was used to align scans longitudinally,
starting with 3 translations, and followed by 3 rotations and 3 scales. This step is not entirely
inverse consistent, i.e., scale followed by rotation gives a different family of transformations
than rotation followed by scale. The effects are likely to be relatively small as rotations and
scales are very small as ADNI implemented stringent calibration procedures to ensure
consistency in global scaling and voxel size calibration over time and across different sites
(Ching et al., 2012; Jack et al., 2008).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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MDT Minimal deformation target

MI Mutual information

Quarc Quantitative anatomical regional change

SPM Statistical parametric mapping
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TBM Tensor-based morphometry

VBM Voxel-based morphometry

TR Repetition time

TE Echo time

TI Inversion time

QC Quality control
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Fig. 1.
High-resolution average group template – the minimal deformation target (MDT). The MDT
is shown here using the radiological convention (with slices at x=140, y=110, z=110, in a
coordinate system whose image centroid is at (110,110,110)).
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Fig. 2.
Cumulative temporal lobe atrophy demonstrates a linear trend, with an intercept that is
essentially zero, in the healthy subjects (N=163) with brain scans at screening, 6, 12, and 24
months. Numerical summaries, representing the amount of cumulative temporal lobe
atrophy, were fitted against time using a linear mixed effects model. The solid line shows
the best linear fit. The dotted lines show the 95% confidence intervals. The plot was
generated with R, using the lme4 package. Fitted intercept and confidence intervals were
0.06% [−0.07, 0.18].
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Fig. 3.
Cumulative brain change in the subjects with complete 2-year visits at screening, 6, 12, 18
(MCI only), and 24 months. Warmer (red) colors indicate ventricle/CSF expansion and
cooler (blue) colors signify tissue loss.
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Fig. 4.
Cumulative atrophy and n80 estimates. (a) The average amount of cumulative temporal lobe
atrophy and its standard deviation were computed for AD, MCI, and normal groups, at 6, 12,
18 (MCI only), and 24 months. (b) n80 estimates show the number of subjects necessary to
detect a 25% reduction in average change in a hypothetical clinical trial with a 6, 12, 18 or
24-month duration (α=0.05, power=80%; see Discussion for assumptions).
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Fig. 5.
“Measured cumulative atrophy” (solid line) compared to “expected cumulative atrophy”
(dotted line) based on an assumption of constant rate. Brain atrophy rates were estimated
using the 12-month cumulative atrophy measures of subjects with complete 2-year visits.
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Fig. 6.
Effect of removing subjects with positive numerical summaries on apparent sample size
requirements (n80), with the upper and lower bounds for the confidence intervals, for trials
that last 12 (a) or 24 (b) months. Computed sample size requirements are 31% lower when
only 7.7% of the scans are removed (25 out of 326 MCIs). Clearly, this vetting would lead
to an overly optimistic sample size estimate.
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Table 1

Available scans for ADNI-1 (N=3314) at March 20, 2012.

Screening 6Mo 12Mo 18Mo 24Mo 36Mo

AD 188 159 138 n/a 105 n/a

MCI 400 346 326 286 244 170

Normal 229 208 196 n/a 172 147

Total 817 713 660 286 521 317
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Table 2

Numerical summaries from subjects with a complete set of visits, up to and including 2 years. Average level
of cumulative temporal lobe atrophy (mean), standard deviation (std dev), sample size estimates (n80) and
95% confidence intervals of the n80 estimates (c) are summarized for the group of ADNI1 subjects with
complete 2-year visits. Only MCI subjects were scanned at 18-months, so the other two groups have no data at
that time-point.

6Mo 12Mo 18Mo 24Mo

AD (N=98) mean 1.44 2.72 5.06

std dev 0.94 1.31 2.00

n80 106 58 39

c [75,187] [45,81] [32,52]

MCI (N=207) mean 0.85 1.65 2.34 3.06

std dev 0.95 1.16 1.56 1.88

n80 312 124 111 95

c [221,556] [98,160] [91,140] [80,120]

Normal (N=163) mean 0.40 0.80 1.50

std dev 0.72 0.72 1.02

n80 785 201 116

c [463,1672] [151,284] [90,160]
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Table 3

Numerical summaries from the full ADNI-1 dataset. The number of subjects (N), average level of cumulative
temporal lobe atrophy (mean), its standard deviation (std dev), sample size estimates (n80) and95% confidence
intervals of the n80 estimates (c) are summarized for the full ADNI-1 dataset.

6Mo 12Mo 18Mo 24Mo 36Mo

AD N 159 138 n/a 105 n/a

Mean 1.46 2.70 5.03

std dev 0.99 1.37 2.04

n80 114 64 41

C [87,166] [51,86] [33,55]

MCI N 346 326 286 244 170

Mean 0.94 1.68 2.31 2.94 4.15

std dev 0.93 1.23 1.62 1.94 2.45

n80 248 135 124 109 87

C [194,358] [114,167] [105,153] [92,131] [74,108]

Normal N 208 196 n/a 172 147

Mean 0.40 0.82 1.48 2.02

std dev 0.72 0.73 1.01 1.24

n80 799 198 118 94

C [500,1528] [154,275] [92,161] [77,125]
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Table 4

Drug trial enrichment based on ApoE genotype. Cumulative atrophy, as a percent of baseline, and n80
estimates at 24-month follow-up, for ApoE ε4 carriers versus non-carriers. N: number of subjects in the
category, atrophy: cumulative atrophy at the 24-month follow-up (% change±standard deviation), n80: sample
size estimate for a 24-month trial to detect a 25% reduction in average change with 80% power (two-sided test
α=0.05), and c: confidence intervals, for n80 estimates.

ε4 carriers (ε4/ε3 or ε4/ε4) non-carriers (ε2/ε2, ε2/ε3 or ε3/ε3)

N atrophy n80 c N atrophy n80 c

AD 69 5.45±1.91 31 [23,41] 33 4.36±2.09 57 [38,93]

MCI 124 3.62±1.95 73 [57,94] 111 2.19±1.67 145 [111,206]

Normal 48 1.67±1.16 122 [80,229] 122 1.38±0.94 116 [87,171]
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